Glucose-deprivation increases thyroid cancer cells sensitivity to metformin.
نویسندگان
چکیده
Metformin inhibits thyroid cancer cell growth. We sought to determine if variable glucose concentrations in medium alter the anti-cancer efficacy of metformin. Thyroid cancer cells (FTC133 and BCPAP) were cultured in high-glucose (20 mM) and low-glucose (5 mM) medium before treatment with metformin. Cell viability and apoptosis assays were performed. Expression of glycolytic genes was examined by real-time PCR, western blot, and immunostaining. Metformin inhibited cellular proliferation in high-glucose medium and induced cell death in low-glucose medium. In low-, but not in high-glucose medium, metformin induced endoplasmic reticulum stress, autophagy, and oncosis. At micromolar concentrations, metformin induced phosphorylation of AMP-activated protein kinase and blocked p-pS6 in low-glucose medium. Metformin increased the rate of glucose consumption from the medium and prompted medium acidification. Medium supplementation with glucose reversed metformin-inducible morphological changes. Treatment with an inhibitor of glycolysis (2-deoxy-d-glucose (2-DG)) increased thyroid cancer cell sensitivity to metformin. The combination of 2-DG with metformin led to cell death. Thyroid cancer cell lines were characterized by over-expression of glycolytic genes, and metformin decreased the protein level of pyruvate kinase muscle 2 (PKM2). PKM2 expression was detected in recurrent thyroid cancer tissue samples. In conclusion, we have demonstrated that the glucose concentration in the cellular milieu is a factor modulating metformin's anti-cancer activity. These data suggest that the combination of metformin with inhibitors of glycolysis could represent a new strategy for the treatment of thyroid cancer.
منابع مشابه
Investigating and targeting chronic lymphocytic leukemia metabolism with the human immunodeficiency virus protease inhibitor ritonavir and metformin.
Chronic lymphocytic leukemia (CLL) remains fatal due to the development of resistance to existing therapies. Targeting abnormal glucose metabolism sensitizes various cancer cells to chemotherapy and/or elicits toxicity. Examination of glucose dependency in CLL demonstrated variable sensitivity to glucose deprivation. Further evaluation of metabolic dependencies of CLL cells resistant to glucose...
متن کاملMetformin Synergistically Enhances Cisplatin-Induced Cytotoxicity in Esophageal Squamous Cancer Cells under Glucose-Deprivation Conditions
Previous studies suggest that metformin may exert a protective effect on cisplatin-induced cytotoxicity in cancer cells, and this finding has led to a caution for considering metformin use in the treatment of cancer patients. However, in this paper we provide the first demonstration that metformin synergistically augments cisplatin cytotoxicity in the esophageal squamous cancer cell line, ECA10...
متن کاملMetformin: a therapeutic opportunity in breast cancer.
Two important, related pathways are involved in cancer growth: the insulin/insulin-like growth factor-1 (IGF1) signaling pathway, which is activated when nutrients are available, and the adenosine mono-phosphate-activated protein kinase (AMPK) pathway, activated when cells are starved for carbohydrates. Metformin inhibits transcription of key gluconeogenesis genes in the liver, increases glucos...
متن کاملEffects of prolonged exposure to low dose metformin in thyroid cancer cell lines
Background: Thyroid cancer is generally associated with an excellent prognosis, but there is significant long-term morbidity with standard treatment. Some sub-types however have a poor prognosis. Metformin, an oral anti-diabetic drug is shown to have anti-cancer effects in several types of cancer (breast, lung and ovarian cancer). The proposed mechanisms include activation of the Adenosine Mono...
متن کاملSelective cytotoxicity of the anti-diabetic drug, metformin, in glucose-deprived chicken DT40 cells
Metformin is a biguanide drug that is widely used in the treatment of diabetes. Epidemiological studies have indicated that metformin exhibits anti-cancer activity. However, the molecular mechanisms underlying this activity currently remain unclear. We hypothesized that metformin is cytotoxic in a tumor-specific environment such as glucose deprivation and/or low oxygen (O2) tension. We herein d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrine-related cancer
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2015